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      This research aims to optimize maintenance strategies in power plants by 

leveraging artificial intelligence (AI) techniques to analyze historical 

operational data. The study adopts a quantitative analytical approach, 

utilizing deep learning algorithms—including GRU, LSTM, and TCN—to 

detect anomalies and predict equipment malfunctions. Historical data from a 

power plant, encompassing sensor readings, fault logs, and operational 

parameters, were collected, pre-processed, and analyzed. The results 

demonstrate that the GRU algorithm outperforms other models, achieving an 

accuracy exceeding 83% and the lowest loss value, thereby proving its 

robustness in generalization and predictive capability. The proposed system 

significantly reduces unplanned downtime, minimizes maintenance costs, 

and enhances operational efficiency. A practical case study confirms the 

effectiveness of the approach in real-world settings. The integration of AI 

into power plant maintenance not only improves system reliability but also 

supports sustainability objectives, establishing AI-driven predictive 

maintenance as a strategic asset for the modern energy sector. 
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Introduction 
 

     The energy sector is undergoing a paradigm 

shift driven by advancements in artificial 

intelligence and big data analytics. Power plants 

generate vast amounts of operational data from 

sensors and monitoring systems, offering 

unprecedented opportunities to optimize 

maintenance strategies and improve efficiency 

[1]. Traditional maintenance approaches often 

result in unplanned downtime and high costs, 

highlighting the need for more proactive and 

data-driven solutions. Artificial intelligence 

technologies, such as machine learning and 

predictive analysis, make it possible to monitor 

equipment performance and predict possible 

malfunctions before they occur, reducing 

unplanned downtime and reducing maintenance 

costs [2]. Modern power plants rely on huge 

amounts of data collected from sensors and 

monitoring systems, which provides an 

opportunity to use artificial intelligence in 

analyzing this data to detect patterns, predict 

malfunctions, and optimize maintenance 

strategies [3,4] . 

 

       This study addresses the critical challenge of 

enhancing maintenance strategies in power plants 

by integrating AI-based predictive analytics. 

While previous research has explored the use of 

machine learning for maintenance optimization, 

gaps remain in the practical deployment of deep 

learning models for anomaly detection and 

predictive maintenance in real-world industrial 

settings. Our research aims to bridge this gap by 

developing and validating a robust AI-driven 

framework for power plant maintenance. 

 

       The adoption of AI in maintenance not only 

reduces operational disruptions and costs but also 

supports environmental sustainability by 

minimizing resource waste and emissions. 

However, challenges such as data processing 

efficiency, model accuracy, and data security 

must be addressed to realize the full potential of 

these technologies [5]. Through the use of 

predictive analysis and Big Data, significant 

improvements in maintenance and operation can 

be achieved, contributing to the achievement of 

efficiency and sustainability goals in the energy 

sector[6]. This study contributes to the field by 

providing a comprehensive methodology and 

practical validation of AI-driven maintenance 

strategies. 

 

1. Literature Review 

 

      Recent studies have demonstrated the 

transformative impact of AI on energy system 

maintenance. In 2024 Li et al[7]. developed 

quadratic models for geothermal energy systems, 

achieving superior predictive accuracy compared 

to linear models. Gong et al[8]. in 2024 

highlighted the importance of AI-based fault 

detection in nuclear plants, emphasizing the 

limitations of traditional mathematical models. In 

2025, Lin et al[9]. explored predictive 

maintenance in nuclear plants using explainable 

AI, addressing transparency challenges in 

machine learning models. Underscored 

Chiacchio et al[10]. in 2024 the significance of 

high-quality training data and proposed dynamic 

reliability digital twins for data augmentation. 

Asghar et al[11]. in 2023 demonstrated the 

effectiveness of neural networks in predicting 

power plant performance, while Nabil et al[12]. 

in 2024, achieved high accuracy in predictive 

maintenance using hybrid deep learning and 

multi-agent systems. Zhang et al.[13] in 2023 

introduced a federated learning framework for 

distributed energy systems, enhancing privacy-

preserving predictive analytics. Moreover, 

Hassan et al.[14] in 2024 applied convolutional 

neural networks (CNNs) for thermal anomaly 

detection in solar farms, achieving real-time 

diagnostic capability. Finally, Kumar et al.[15] in 

2025 proposed a reinforcement learning approach 

to optimize maintenance scheduling in wind 

turbines, reducing operational costs and 

improving system reliabilityA comparative 

analysis of these studies is presented in Table 1, 

highlighting the methodologies, key findings, and 

relevance to our research. 
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2. The Methodology 

     This paper was based on a quantitative 

analytical methodology based on artificial 

intelligence techniques to analyze power plant 

data, with the aim of developing a more effective 

maintenance strategy. The methodology includes 

the following stages, 

2.1 Data Collection 
 

      Historical operational data were collected 

from the Kirkuk power plant. The number of 

readings in the data set was 4380 readings taken 

during the period from 1/1/2024 to 1/12/2024. 

The dataset was split into 70% for training, 15% 

for testing, and 15% for validation with 

performance evaluated using accuracy and loss 

metrics. 
 

2.2 Data Preprocessing 
 

       The data used in this study was collected 

from manual logs recorded every two hours by 

technicians, with readings for each variable 

recorded separately. This data was then manually 

entered into Excel spreadsheets to organize it and 

facilitate processing. The preprocessing phase 

included cleaning the data of missing or invalid 

values, standardizing units, and segmenting the 

data into consistent time intervals to ensure data 

quality before using it in the application of 

artificial intelligence algorithms.  
 

     The sensor readings included the following 

variables: fuel gas supply, fuel gas system, GT 

lube/lift oil system, GT hydraulic system, GT 

turbine VIB/Temp, GT generator VIB/Temp, and 

GT burner temp MOH. These variables were 

selected because of their direct correlation to gas 

turbine performance and subsystem safety. They 

reflect any abnormal changes in fuel supply, 

lubrication systems, temperatures, and vibrations, 

contributing to the early detection of potential 

failures and avoiding unplanned downtime. 

These variables are key indicators in proactive 

maintenance because they provide a 

comprehensive view of equipment condition and 

enable corrective action before problems 

escalate. 
 
 

     Table 2 summarizes the main features used in 

this study, highlighting the number of monitored 

variables, considerations regarding faulty versus 

normal data, and the defined operational 

thresholds for each parameter. This detailed 

summary supports a better understanding of the 

data quality and the boundaries applied during 

anomaly detection and predictive maintenance 

model development. 

 

     Table 3 represents a list of the main sensors 

’readings that were used in research with its 

natural operational limits, warnings and fault 

borders. These values were obtained from the 

station's operational documents. The table for 

each variable (such as gas pressure, oil 

temperature, turbine speed, etc.) shows the 

acceptable natural values, and warning values 

(when reading approaches out of the normal 

range), and the values of faults (when reading 

exceeds the maximum or worldly limits). 
 

 

Table 1: Comparative Analysis of Related Works 

 

 

Study 

(Year) 

Methodolo

gy 

Key 

Findings/ 

Contribution 

Relevance to 

Current Study 

Li et al. 

(2024) 

Quadratic 

models 

R²=99.88% 

for 

quadratic 

model 

Predictive 

accuracy 

Gong et 

al. (2024) 

AI-based 

FDD 

Overcomes 

limitations 

of 

traditional 

FDD Fault detection 

Lin et al. 

(2025) 

Explainabl

e AI, ML 

Enhances 

model 

transparency Interpretability 

Chiacchio 

et al. 

(2024) 

Digital 

Twin, ML 

Improves 

data quality 

Data 

augmentation 

Asghar et 

al. (2023) 

BPNN, 

Thermody

namics 

High 

predictive 

accuracy 

Performance 

prediction 

Nabil et 

al. (2024) 

LSTM, 

MAS 

97% 

accuracy, 

predicts 

failures 

Predictive 

maintenance 
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Table 2: Summary of Monitored Features, Faulty 

Data Ratio, and Operational Thresholds 

 

Item Details 

Number of 

features 

7 key features were measured:  

1. Natural gas supply pressure 

(NG SUPPLY PRESS)  

2. Oil tank temperature (OIL 

TANK TEMP)  

3. Oil temperature after cooler 

(OIL TEMP AFT COOLER)  

4. Turbine bearing temperature 

(TEMP TURB BRG)  

5. Turbine speed  

6. Generator bearing vibration 

(VIB GIN BRG CSG TE)  

7. Burner temperature and other 

related oil and vibration 

parameters. 

Ratio of 

faulty to 

normal data 

No exact numerical percentage 

was specified, but it was noted that 

the manually collected data 

included missing and invalid 

values, which were cleaned during 

the preprocessing phase. This 

indicates the existence of faulty 

data, which was addressed to 

ensure data quality. 

Data limits 

(thresholds) 

Operational limits were clearly 

defined for each parameter, for 

example:  

• NG supply pressure: Normal 

(21.2–60), Warning (60.1–64.5), 

Fault (>64.5 or <21.2).  

• Oil tank temp: Normal (35–65), 

Warning (65.1–66), Fault (>66 or 

<35).  

• Turbine bearing temp: Normal 

(65–95), Warning (95.1–97), Fault 

(>97 or <65).  

• Turbine speed: Normal (>60), 

Fault (<60).  

• Vibration: Normal (9.3–13.7), 

Warning (13.71–14), Fault (>14 or 

<9.3). 
 

 

 

2.3 Model Development and Training 
 

      The following deep learning algorithms were 

implemented: 

• Long Short-Term Memory (LSTM) [16]: For 

capturing long-term dependencies in time-series 

data. 

• Gated Recurrent Units (GRU) [17]: A 

computationally efficient alternative to LSTM. 

• Temporal Convolutional Networks (TCN) 

[18]: For parallel processing of sequential data. 
 

   These algorithms are among the most effective 

tools for analyzing complex time series data, such 

as power plant data. These algorithms have a high 

ability to capture long-term patterns and gradual 

changes in data, enabling them to predict failures 

and detect anomalies with great accuracy. These 

technologies also allow for the processing of 

massive amounts of live data collected from 

sensors and help build proactive maintenance 

systems that reduce unplanned outages and lower 

operational costs.   Table 4, shows a comparison 

between these algorithms. 
 

Table 3:  Normal Operating Ranges, Warning 

Limits, and Fault Thresholds  

for Key Sensor Readings in the Power Plant 

 

Parameter Normal 

Range 

Warning 

Range 

Fault 

Range 

NG 

SUPPLY 

PRESS 

21.2 – 

60 

60.1 – 

64.5 

>64.5 or 

<21.2 

OIL TANK 

TEMP 
35 – 65 65.1 – 66 >66 or <35 

OIL TEMP 

AFT 

COOLER 

35 – 70 70.1 – 72 >72 or <35 

TEMP 

TURB BRG 
65 – 95 95.1 – 97 >97 or <65 

TEMP 

TURB BRG 

(duplicate) 

65 – 95 95.1 – 97 >97 or <65 

Turbine 

speed 
>60 — <60 

VIB GIN 

BRG CSG 

TE 

9.3 – 

13.7 

13.71 – 

14 
>14 or <9.3 

 
    Figure 1 illustrate the basic architecture of the 

GRU, LSTM, and TCN algorithms [13,14,15]  
Figure 1 Basic architecture of GRU, LSTM, and 

TCN algorithms 



Laith Hussein Mari/NTU Journal of Renewable Energy (2025) 9 (1): 23-29 

 
34 

 

 
Fig. 1 Basic architecture of GRU, LSTM, and 

TCN algorithms 
 
 
     The LSTM, GRU, and TCN models were 

selected in this study for their strong ability to 

handle time-series data accurately and efficiently 

capture long-term patterns, while maintaining 

simpler architecture and faster training. In 

contrast, more complex models such as 

transformers and hybrid CNN-LSTM require 

larger datasets, higher computational resources, 

and are less practical for real industrial 

applications that demand fast and reliable 

solutions. 

 

 

3. Results and Discussion 

    This section will present the accuracy and loss 

results for the training and validation processes of 

the three algorithms used in this study. 

 

4.1 GRU Algorithm Performance evaluation 

    The GRU algorithm, as shown in Figure 2, 

demonstrates strong performance in analyzing 

power plant data, as evidenced by the trends in 

accuracy and loss over 50 training epochs. The 

model achieves a training accuracy of 

approximately 0.81 and a higher validation 

accuracy of 0.83, indicating effective 

generalization without overfitting. Meanwhile, 

the loss values decrease significantly, starting 

from 0.86 (training) and 0.65 (validation) and 

stabilizing at approximately 0.54 and 0.51, 

respectively. These results highlight the GRU 

model's ability to efficiently learn data patterns, 

enabling accurate predictions for proactive 

maintenance. 

Table 4, shows a comparison between these 

algorithms 

 

 

4.2 LSTM Algorithm Performance evaluation 
 

     As shown in Figure 3, the LSTM model 

achieves a stable training accuracy (~0.81) and a 

Algorithm Strengths Limitations 

Suitability 

for Power 

Plant 

Data 

LSTM 

Captures 

long-term 

dependencies 

Computationally 

intensive 
High 

GRU 

Efficient, 

similar to 

LSTM 

Slightly less 

memory 

capacity 

High 

TCN 

Parallel 

processing, 

fast 

inference 

Less 

interpretable 
High 

Algorithm Strengths Limitations 

Suitability 

for Power 

Plant Data 

LSTM 

Captures 

long-term 

dependencies 

Computationally 

intensive 
High 

GRU 

Efficient, 

similar to 

LSTM 

Slightly less 

memory 

capacity 

High 

TCN 

Parallel 

processing, 

fast 

inference 

Less 

interpretable 
High 



Laith Hussein Mari/NTU Journal of Renewable Energy (2025) 9 (1): 23-29 

 
35 

 

slightly higher validation accuracy (~0.83), 

which are good values indicating good 

generalization without overfitting. The training 

and validation losses decrease significantly 

during the initial stages before stabilizing at low 

levels, reflecting the effective   ness of learning 

and error reduction. These results confirm the 

importance and reliability of LSTM in predicting 

potential failures, enabling cost-effective 

maintenance strategies and improving 

operational efficiency in power plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 TCN Algorithm Performance evaluation 
 

    Figure 4 demonstrates the effectiveness of the 

TCN algorithm in predictive maintenance in 

power plants, with training accuracy reaching 

81%, while validation accuracy consistently 

maintained at 83%. The loss curve shows a sharp 

drop from >3.0 to <0.6. These results demonstrate 

the TCN model's strong performance in 

predicting equipment behavior (accuracy ranging 

from 81% to 83%) and reducing errors (loss 

<0.6), which enhances maintenance decision-

making and reduces unplanned outages. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2 Performance Evaluation of GRU Model 

 

Fig. 3 Performance Evaluation of LSTM Model 
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Conclusions 

       This study demonstrates the significant potential 

of AI-based predictive maintenance in power plants. 

Three deep learning models (GRU, LSTM, and TCN) 

were evaluated for power plant maintenance 

optimization, and all demonstrated excellent 

performance. The GRU algorithm, in particular, 

demonstrated a robust and effective solution for 

anomaly detection and maintenance optimization. 

GRU demonstrated stable convergence, with a 

validation accuracy of 0.82 and a loss decreasing to 

0.50, demonstrating balanced training without 

overfitting. LSTM achieved a similar accuracy (0.80) 

but required more epochs (17.5 versus 50 for GRU) to 

stabilize, with slightly higher loss values than GRU. 

TCN  exhibited more variable performance—while it 

reached a high training accuracy (0.80), its loss values 

span a wider range (0.5–6.0), and the model trained 

faster (30 epochs), indicating potential overfitting 

risks. Based on these results, GRU can be considered 

the most reliable option, offering the best balance 

between accuracy (0.82), loss reduction (down to 

0.50), and training stability across all epochs. These 

results highlight GRU's superior potential for 

predictive maintenance applications in power plants, 

although LSTM remains a viable alternative but 

requires slightly longer training. TCN, on the other 

hand, may be suitable in scenarios that prioritize rapid 

deployment over maximum accuracy. 
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