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This study aims to estimate the parameters of confirmatory factor 

analysis with non-normal variables using a Bayesian approach. In this 

study, the estimation method is (Markov chain Monte Carlo) "MCMC" 

simulation, and the ordinal variables have defined cut points (Gibbs 

sampling). To handle non-normal outcomes, censoring techniques with 

distinct cut-points are used. 

Additional methods are interpreted, including the (Bayesian estimator), 

(standard deviations) "SD", and (highest posterior density) "HPD". 

)Quality of life( "QOL" data and observations from the OpenBUGS 

program are used to explain the established process. 
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Introduction 

Confirmatory Factor Analysis (CFA) is a statistical test that establishes the statistical significance of a 

proposed factor composition by identifying the number of factors that will be present within a set of variables as 

well as the proportion of each factor to each variable. In order to analyze structural equation modeling, 

confirmatory factor analysis is a necessary step. 

Confirmatory Factor Analysis (CFA), a type of SEM analysis, was performed after EFA to establish the 

"construct validity" of the factors and as an a priori stage for SEM analysis. 

Both calculated variables are related to each latent variable in exploratory factor analysis. Researchers can 

categorize the number of selected variables in the data and which measurable variable is linked to which latent 

variable using confirmatory factor analysis (CFA) (1). 

(CFA) (2) is a real system for viewing a series of relevant data in order to assess the interrelationships 

between manifest and latent variables. 

Several scientists have proposed models based on confirmatory factor analysis in the past years. Any of 

these papers were suggested by Zhang et al., (3); Taylor, (4); Yu et. al, (5);  Zarei et. al, (6); Karatza, (1);   

Shigemasu et al., (7); Hoofs, et al., (8). 

Confirmatory factor analysis is an effective technique in many applications, including cross-cultural studies. 

The demand for unobtrusive models and related real strategies for addressing complex research issues in various 

fields has prompted the rapid development of confirmatory factor analysis models. 

The concept of a Bayesian technique, in which the censoring distribution and latent variables are considered 

as fictitious missing data, is produced by the Gibbs sampling algorithm (9) Conjugate priors are employed for 

the structural parameters, and the cut points are determined by non-informative priors. 

In this paper, a method for analyzing confirmatory factor analysis models with non-normal data is given 

using a Bayesian approach. For model selection, the Deviance Information Criterion (DIC) is used (10). 

The primary challenge is to address the issue of non-normal data (ordinal data) in the confirmatory factor 

analysis. Bayesian analysis is used to estimate the parameters, regard the censoring distribution as missing data, 

and combine it with the data in the posterior analysis. 

The following is the structure of the paper. Part 2 introduces the confirmatory factor analysis model. In Part 

3, Bayesian estimation is used to implement confirmatory factor analysis. Part 4 employs DIC to address 

Bayesian model selection. A actual data example is presented in Part 5. In Part 6, The research results and 

comments are covered, and the conclusions are provided in Part 7. 

Confirmatory Factor Analysis Model  

The exploratory factor analysis (EFA) paradigm naturally leads to the confirmatory factor analysis (CFA) 

model. For illustration, the following CFA is regarded as (2). 

           
,  x 

               
(1) 

where ix ( 1)p   is introduced as a  random vector of observed variables, ( )p q  is a factor loading 

matrix,
 
 ( 1)q   is a latent factors vector, ( 1)p   is called a random vector of residuals. So, 

 
is then 

distributed as [ , ]N I0 . Further,
 
  is distributed as

 
[ , ]N 0  , where   with diagonal elements 

1,..., p    is a diagonal matrix. It has also been determined that, in this case,   and   are both independent 

as well.
 

The confirmatory factor analysis proposed here can be applied to a wide range of circumstances. 

Furthermore, when it comes to confirmatory factor analysis, it's important to pay attention to how the mean 

vector, х, relates to µ. 

To address the issue of non-normal data, it should be assumed that is a sub-vector of the unobservable 

continuous data. The observed ordinal vector iz
reflects this information. An ordinal variable can be introduced 

in accordance with its unobserved continuous random variable my
at the most fundamental level.                         
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Such that it is also true that ,1 ,2 ,b ,b 1{ ... }
m mm m m m           

is the set of cut point's 

specification which define the given classes, and mb
for which mb

represents the number of selected cut points 

regarding the ordinal variable mz
.  

However, it must be understood that the number of cut-points is similar for every ordinal variable. 

Bayesian Analysis of Confirmatory Factor Analysis Model 

In this part, we'll look at confirmatory factor analysis and how to estimate the parameters using the 

Bayesian approach. Enable, on the other hand,   a vector representing the unidentified parameter in the 

aforementioned model, as well as  serving as a vector representing the cut points for the ordinal variables. 

To be more precise, we permit   to be a vector holding the entire collection of unique unknown 

parameters. As a result, the Gibbs sampler is used to construct the Bayesian estimates of   and  . 

In addition, consider 1( ,..., )NZ z z
 the observed ordinal data and 1( ,..., )NY y y

the latent 

continuous measurement with regard to Z. 

Add Y to the observed data in the posterior analysis after that. The problem will be simpler to solve once Y 

has been defined because all the data are taken into consideration and are treated continuous. Allow 

1( ,..., )N  
 the matrix of latent variables to be as well. 

As a result, by enhancing the data, problems related to the model's more intricate components can be 

resolved. Posterior analysis Z, which stands for the collection of observed data, can be added to by ( , )Y  . 

We will also show the joint posterior distribution [ , , , | ]Y Z   . To produce a set of observations from the 

relevant joint posterior distribution, the Gibbs sampling algorithm can be used. 

The sample mean and variance matrices can be used to calculate the Bayesian estimate   for and the 

standard error estimates, respectively. 

   - ∑  ( ) 
        (  ⁄ ) ( - )

- 
∑ ( ( )   )( ( )   )

  
      (2) 

    

           

The following well-known conjugate prior distributions are used: 

       0 0 0 0( ) ~ [ , ], ( | ) ~ [ , ],k k k k k k k kp N p N         H H    

       

1 1

0 0 0 0( ) ~ [ , ], ( ) ~ [ , ]q k k kp W p Gamma     R                                           (3) 

Given the definition that k
, is the kth diagonal element of 

, k  
 and k 

 are the kth rows of   

and  , respectively. 

2 2

0 01 0( ,..., ),pdiag  H
and 0 0 0, , ,k k k  

 0 0 0 0 0, , , , ,k k k   H H
 and 0R

 

are assumed to be known, however, prior information is obtained via analysis of past data, theoretical 

consideration, and causal observance. 

As built up incited by Kass and Raftery (11), expected prior knowledge, as it is connected to current 

models, are commonly chosen only for comfort when there is no sufficiently precise gathered prior data. This 

should be possible on the grounds that the impact these presumptions have on Bayesian estimations stays little, 

notwithstanding when a huge example measure is utilized. The outcomes are useful when attempting to utilize 

PC displaying with the Gibbs sampler (9) because it can simulate ,   and  , all from the conditional 

distribution. 

Notwithstanding, because of the presence of ordinal data for this situation, the related conditional 

distributions can be made excessively unpredictable, making it impossible to easily derive or simulating data 

from them.  

To get on the observation from the posterior distribution, the simulation process will begin with the starting 

values and then simulate the first observation
(1) (1) (1) (1)( , , , )Y  

and finally simulate the mth repetition of 

these observations. 
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The series, after the mth repetition, will give us
( 1) ( 1) ( 1) ( 1)( , , , )m m m m   

Y  
. However, the joint 

distribution
( ) ( ) ( ) ( )( , , , )m m m m

Y  
can be proven to move toward the joint posterior distribution

[ , , , ]Y Z  
 ( Geyer, 1992  ( .(12)  

Bayesian Model Selection 

In this paper, DIC is used provided by OpenBUGS. It is equal to: 

( ) 2D DDIC D p D p   
      (4) 

Where 

 
D

 is (the posterior mean of the deviance), 

 Dp
 is (the effective number of parameters), 

 and 
( )D 

 is the point estimate of the deviance at the mean of the estimated parameters θ. 

The deviance is defined as 

                  
( ) 2log ( / ) (5)D f y  

            

While  

( )

1

2
log ( / ) (6)

N
t

t B

D f y
N


 

  
            

The model that can best predict a replicate dataset with a structure that differs from what is currently 

observed has the minimal DIC, according to this theory (1). 

The OpenBUGS software generates the DIC values for the confirmatory factor analysis with real data. 

Real Data Example 

The analysis of the data gathered for the aim of this study will be thoroughly covered in this part. The data 

is incredibly helpful for clinical work, social insurance planning and evaluation, and medical research. It 

measures the quality of life. It is commonly acknowledged that quality of life (QOL) is a multifaceted notion 

best assessed by different underlying constructs, including physical ability, wellbeing status, mental status, and 

social relations (13). 

A QOL instrument typically has three to five categories and items that are estimated on an ordinal scale. 

The items' discrete ordinal character also attracts much attention in QOL research (14); (15). 

This instrument WHOQOL-100 (13) was built up to assess four latent factors.  

 
Table 1. Description of the data 

" (Q1 to Q7) are planned to address physical health" 

"(Q8 to Q13) are proposed to address mental health" 

" (Q14, Q15, Q16) that take after are for social connections" 

 "(Q17 to Q24) are expected to address condition, giving a sum of 24 items" 

 

A five-point scale is used to rate the majority of the items (1 = "not at all/very dissatisfied," 2 = "a 

little/dissatisfied," 3 = "moderate/neither," 4 = "very much/satisfied," and 5 = "extremely/very satisfied"). 

To outline the Bayesian techniques, we investigate a real data set with sample size n = 338.  

Regarding these ordinal data as originating from continuous normal distribution is not right.  

A real data example with 24 manifest variables are related to four basic latent variables 1 2 3 4( , , , )i i i i   

from CFAMs defined in Equation (3) is discussed here. To illustrate the confirmatory factor analysis Bayesian 

method with ordinal variables, using an actual data set that has random vector 1 2 24( , ,..., )i i i i
z z z z
, 

consider 1 2 24( , ,..., )i i i i
y y y y
the random vector of latent continuous, which corresponds to the ordinal 
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variables 1 2 24, ,...,i i iz z z
where 

, i 1,...,ni z
. The ordinal variables are connected to (4) latent variables, 

1 2 3 4( , , , )i i i i i   w
, 1 2 24( , ,..., )i i i i   

 with the parameter values in 1 2 20( , ,..., )   
. 

The confirmatory factor analysis model evaluates the associations of the latent variables in 

1 2 1 2
( , , , )

i i i i i
w    

. 

The following were the hyper-parameter values' previous inputs: 

1. Prior I: The elements in  0k
 and 0 k

Equations (3) and are series equal to the following possible 

values, with initial values of 1. 

"

1

0 8  R 
 0 0,u kH H

and 0 kH
are used to be 0.25 times the identity matrices; 0 10k 

 , 

0 8k 
 , 0 30 

". 

2- Prior II: The following optional values, with initial values equal to 0.5, are placed between the elements 

in 0k
 and 0 k

in Equation (3); 

"

1

0 8  R 
 0 0,u kH H

and 0 kH
are used to be 0.25 times the identity matrices; 0 10k 

 , 

0 8k 
 , 0 30 

". 

OpenBUGS (16) used the quality of life data set with (n=338) to implement Bayesian estimates in the 

confirmatory factor analysis model. When comparing the Bayesian analyses of confirmatory factor analysis with 

the data, the MCMC process for data analysis required more iterations to converge. In the confirmatory factor 

analysis model, the parameters were estimated using a Bayesian technique from T=10000 iterations for the 

censored distribution. We will use OpenBUGS to analyze the current data set in order to explain it. 

Results and Discussion 

This section's goal is to discuss data results in order to show how well the parameter estimates and model 

choice work empirically. 

For analyzing confirmatory factor analysis models for ordinal data, the Bayesian technique is introduced. 

Utilizing recently created robust tools and the open-source statistical program OpenBUGS, the Bayesian 

analysis of the unknown parameters and the model selection (DIC) are obtained. As a result, using our suggested 

method with actual data is convenient. Utilizing Bayesian confirmatory factor analysis models with ordinal 

variables is the goal of this analysis. The examination of ordinal data has some restrictions in confirmatory 

factor analysis models. For analyzing confirmatory factor analysis models for ordinal data, the Bayesian 

technique is introduced. Utilizing recently created robust tools and the open-source statistical program 

OpenBUGS, the Bayesian analysis of the unknown parameters and the model selection (DIC) are obtained. As a 

result, using our suggested method with actual data is convenient. Utilizing Bayesian confirmatory factor 

analysis models with ordinal variables is the goal of this analysis. The examination of ordinal data has some 

restrictions in confirmatory factor analysis models. 

To begin with, despite the presence of discrete data, most data in the social and behavioral sciences are 

ordinal data. Finding a different approach to manage the issue of ordinal variables is important because ordinal 

data analysis obviously violates the main hypothesis of CFA, which is that the data come from a normal 

distribution. 

As a result, systematically treating ordinal factors as ordinary can lead to erroneous conclusions (17). 

Treating these data as findings that come from a censoring distribution with specific cut points is a better 

method for evaluating them. 

Figure (2) below explains the path diagram of CFA model and the relationships between latent variables 

and observed variables. 
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 Figure 1. Path Diagram 
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Figure 2. Time Series Plot and Posterior Density Plot of observation corresponding to (a) 3 ; (b) 7 ; (c)
 34 ; (d) 42 ; 

(e)
 13 ; (f)

 16 ; and for CFA with Ordinal Variables 

 
Table 2. Bayesian Estimation of Confirmatory Factor Analysis Model with Ordinal Variables 

(Par) (Est) (SD)  (HPD)  (Par) (Est) (SD) (HPD) 

λ 1
 1.046 0.113  [0.835, 1.279]  ɸ33

 

0.575 0.093 [0.408, 0.775] 

λ 2
 1.22 0.100  [1.035, 1.422]  ɸ34

 
0.312 0.050 [0.221, 0.416] 

λ 3
 1.167 0.107  [0.969, 1.381]  ɸ44

 

0.489 0.064 [0.379, 0.623] 

λ 4
 0.954 0.102  [0.759, 1.164]  Ψ1

 
0.866 0.089 [0.705, 1.054] 

λ 5
 1.176 0.084  [1.021, 1.349]  Ψ2

 
0.593 0.066 [0.472, 0.731] 

λ6
 1.292 0.101  [1.095, 1.492]  Ψ3

 
1.294 0.144 [1.031, 1.591] 

λ 7
 0.883 0.086  [0.717, 1.056]  Ψ4

 
0.901 0.105 [0.711, 1.119] 

λ 8
 0.693 0.073  [0.555, 0.842]  Ψ5

 
0.724 0.072 [0.593, 0.869] 

λ 9
 0.821 0.091  [0.650, 1.008]  Ψ6

 
3.257 0.401 [2.536, 4.088] 

λ 10
 1.058 0.082  [0.899, 1.223]  Ψ7

 
1.428 0.159 [1.142, 1.764] 

λ 11
 0.849 0.074  [0.705, 0.997]  Ψ8

 
2.237 0.246 [1.785, 2.747] 

λ12
 0.276 0.131  [0.025, 0.537]  Ψ9

 
1.370 0.139 [1.115, 1.656] 
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Table 3. Confirmatory Factor Analysis Model with Ordinal Variables and Goodness of Fit Statistics(DIC) 

 Dbar Dhat DIC pD 

Total 18290.0 17400.0 19190.0 897.7 

 
This article reports results of Bayesian confirmatory factor analysis performed to QOL data. 

Table 2 shows the results for ordinal variables with censoring distributions and cut point specifications (2). 

We found that the SD values for all parameters are small. 

The parameter with the highest posterior density (HPD) was chosen. When using a censored distribution, 

we discovered that the HPD intervals are useful for ordinal variables. The HPD is far from zero, so all 

parameters are important. 

We used confirmatory factor analysis to conduct a second examination of the data sets in order to 

demonstrate the utility of DIC for the goodness of fit test. The right model was used to compare the DIC values 

that were obtained. The outcomes are shown in Table (3). 

When employing censored distribution and ordinal data, the goodness of fit test for CFA is (19190.0). 

With cut points specified, the best-fitted model with the minimum DIC value was taken into consideration 

(-200.000, -2.517, -1.245, -0.444, 0.848, 200.000). Therefore, DIC's performance was satisfactory. 

Plots illustrating many sequences of the different parameters that were produced, with varying initial values 

 were used to observe the Gibbs sampler's convergence, which is shown separately in Figure (2). In CFA 

models for censoring distribution, Bayesian evaluations were obtained from T = 10000 iterations. 

Conclusions and Recommendations 

As seen in this article, social and behavioral sciences frequently employ confirmatory factor analysis 

models. This paper can be divided into three parts. To obtain all of the predicted parameters, the first step in this 

analysis was to use confirmatory factor analysis models. The second argument was to use censoring distribution 

to solve the problem of ordinal data. 

Cut points were used to carry out the proposed procedures. The development of confirmatory factor 

analysis models is the third stage. There are representations of latent variables in equations in confirmatory 

factor analysis models. Due to the complication of the suggested model, this article uses observable techniques 

to obtain "SD" estimates, as well as a Bayesian goodness of fit test using the (DIC) are discussed. 

As we've seen, the discrete concept of ordinal data and the causal links among latent components are 

problems that can be solved by data augmentation using some MCMC approaches. With complete knowledge, it 

will be rather simple to add the hypothetically missing data to the actual observed data. This is a powerful 

technique that can be linked to other, more uncertain techniques. 
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