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Introduction

Throughout this paper all rings are associative with unit, and D-module are unitial. For a € D,
r(a)and l(a) denote the right and left annihilator of a, respectively. We write Y(D), N(D),J(D) for
the right singular ideal the set of nilpotent elements and Jacobson radical of D. Generalization of N-
injectivity (WN-injective) have been discussed in many papers [2,3,4]. Aright D-module u is called
N-injective ring (WN-injective), if a € N(D), lr(a) = Da(lr(a™) = Da™). In [5] Zhao and DU
introduced an AN-injective module. Let u be a right D-module with S=End (y#p). The module p is
called AN-injective, if for any a € N(D), there exists an Y-submodule X, of u such that [,m(a) =
ua@®X as left S-module. They also studied right AN-injective rings and gave some
characterizations and properties which generalized results of [3]. The module p called AGP-injective
if, for any a € D there exists n =1 and an Y-submodule X, of u such that a™ # 0 and [,r,(a™) =
ua™ @ X, as left Y-module [6]. Right D-module p is called JCPI [7,8] if, for any a ¢ Y(D) and any
right D-homomorphism of aD into p extends to one of D into u. D is called right JCPL, if D is an
JCPI module. A ring D is regular if for every a € D there is b € D so that a = aba [9]. In [10], the
regular element in non-commutative rings have been discussed for example,M,(Z,) and M,(Z3).
Also, [11] studied some properties of regular and simple generalized m-flat rings. D is N-regular if
for all a € N(D) is regular [2].

2. Almost WN-injective rings

In [1], introduced the notion of almost WN-injective rings as a generalization of that of almost
N-injective rings, namely a module u is called almost WN-injective (AWNI) if for any a € N(D),
there exists n =1 and an Y-submodule X, of p such that a™ # 0 and [,7p(a") = pa™ @ X,n as left
S-module with S=End(u). If D is a right AWNI, the we call D is a right AWNI-ring.

Many of the results on right AGP-injective rings were obtained for the class of AWNI- rings.
Example: Let D = Z is AWNI- ring but not AGP-injective.
Remark: Obviously, right WN-injective rings are right AWNI, but the convers is false in general. For example,

_ [0 Al ... . _ [0 A 0 z1_[0 A 0 z]_

16(:)t DF— [0 A] with Aols afield, N(()D) = [0 0]. Let 0 # z € A. Then Ir 0 ol = 00 A] and D [8 ol =
z z . . . z] _ z

[0 0]. Therefore Ir 0 0] #D 0 0], D is not right WN-injective. Note that Ir 0o ol = D 0 0] S

[8 j] Therefore, R is right AWNIL.

We now start with a lemma to be used extensively in the paper.

2.1 Lemma:[3] Suppose that u is a right D-module with S=End (up) if lr(a™) = pa"®X,n, where
X n is a left Y-submodule of p. Set f:a™D — p is a right D-homomorphism, then f(a™) = ma™ +
xX,meuxeX,.

2.2 Theorem: If D is aright AWNI- ring, then eDe is AWNI-ring, e € Id(D) such that DeD = D.

Proof: Let S=eDe and a € N(S) =eNe. Then a =ae € N(D), so there exists n=1 and a left
ideal X n of D, such that lyr,(a™) = Da™ @ X,n .Since 1 —e € r(a™) we see that t(1 —e) =0 for
any t € X,n, which imiplies that X, = X ne. Thus eDa"eneX ne=0. Clearly, eDa"e <
Iir;r(@™) and eXgne € [irg(a™). Since Da™e = Da™ and X,» = X, ne. Now, take x € [;75(a™) and
write 1= )", a" ebi for some a;,b; €D and m = 1. Then for any y € r(a"), we get a"eya™;e =
a"ya™;e =0. This implies that xeya™;e =0 for each I, which gives xy =xey} [t a™eb, =0,
since x €S. So x € lprp(a™) and hence Lr(a™) € lprp(a™). Take x =s+t, where s € Da™ and
t € X n. Hence X = exe = ese xete € eRa"e + eX ne and I;r;(a™) = eDa"e@eX ne =
Sa*@eX ,n where eX n is aleft ideal of S Therefore, S is right AWNIL. m

A ring D is called weak symmetric if abc being nilpotent implies that ach is nilpotent for all a,b,c €
D [12].

2.3 Lemma:[12] If D be a weak symmetric ring, then all nilpotent elements of D are in J(D).

2.4 Proposition: Let D be weak symmetric and right AWNI- ring. Then J(D) < Y(D).

Proof: Let 0 = a € N(D). If a € Y(D), then there exists anon zero ideal of D such that r(a)NK =
0. Hence there exists b € K such that ab # 0. Note that o € J(D)(Lem.2.3) and ab € J(D). Since D
is AWNI-ring, then there exists 0 #u € abD and n=1 such that u™ #0 and Ir(u™) = Du"®X
for some a left ideal X,n of D. Write u™ = abc for some c¢ € D. If t € r(abc), then abct =0 and
this implies that ct € r(ab) = r(b) since r(a) NK = 0. Hence (bc)t =b(ct) =0 and so t € r(bc)
so r(bc)= r(abc), Note that bc € lr(bc) = Ir(abc) = Du™®X,n. Write bc =dabc+x, where
d€D. Hence x=bhbc—dabc, x =(1—da)bc,x(1—da)™* =bc, and so bc € Xyn. Since 1—da
is invertible, contradicting with doabc € Du™ —X,n. There fore a €Y(D) and hence J(D)C
Y(D).m
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2.5 Lemma:[2] Let D be a right JCPI. Then Y(D) < J(D).
From Lem.(2.5) and prop.(2.4), we have the following corollary.
2.6 Corollary: Let D be weak symmetric, right JCPI and right AWNI- ring, then J(D) = Y(D).
2.7 Theorem: If D is a weak symmetric ring whose every simple right D-module is AWNI, then D is
reduced.
Proof: Assume that 0 # a € D with a®? = 0. Thus r(a) S L, where L be amaximal right ideal of D.
Since D/L is AWNI, then Iy, r(a™) =D/L@® Xan, Xon < D/L. Let f:aD — D/L be defined by
flay) =y+LyeD. Note that f is well defined. So 1+L=f(a)=ca+Lc€D,x€X,u, by
Lem.(2.1) 1—ca+L=x€D/LNX=0, so 1—ca€lL, since ca€N(D),1—ca is invertible,
which is a contradiction. Therefore, D is a reduced ring. m
According to [13], a ring D is called GWr- regular, if for all a € /(D) there exists n =1 such that
a® € a"Da™D.
2.8 Proposition: If D is a weak symmetric ring whose every simple right D-module is AWNI, then D
is GWr- regular ring.
Proof: Let a € N(D), then by Lem.(2.3), a € J(D). We will show that Da"D +r(a™) =D, n=>1.
If Da™D +r(a™) # D, then there exists amaximal right ideal L of D containing Da™D + r(a™).
Then by a similar way as in the previous process, there exists b € D such that 1 — ba™ € L. Since
ba™ € N(D), 1—ba™ is invertible, which is a contradiction. There fore Da™D + r(a™) = D for any
a € J(D) and implies that D is GWrn- regular ring. m
From Theorem (2.7) we get corollary
2.9 Corollary: If D is a weak symmetric ring whose every simple right D -module is AWNI, then:

I. ND)njD)=0

2. IfJ(D)isnil then J(D) =0
2.10 Proposition: Let D be a weak symmetric ring, Consequently, the subsequent conditions are
similar. D is reduced.
D is reduced.
D is N-regular.
D is a right N-injective.
D is a right WN-injective.
D is a right AWNI.

6. Every simple right D-module is AWNI.

Proof:1— 2 — 3 — 5 — 6 is clear and by Theorem (2.7) 6— 1 m
2.11 Theorem: Let D be a weak symmetric and every simple singular right D-module is AWNI, then
Y(D)=0.
Proof: Suppose that Y(D) = 0, then Y(D) contains a non zero element z such that z? = 0. Therefore
r(z) # D. Let L be a maximal right ideal of D containing r(z), then L is an essential right ideal of D
which implies that D / L is a right AWNI and I/, r(z) = (D/L) D X,, X, <D/L. Let f:zD — D/L
be defined by f(zy)=y+L, it is note that f is well defined. Hence, 1+ L =f(z) =cz+L+
x,c€D,x€X,,1—ca+L=xD/LNX=0. So 1-cze€l By Lem(2.3), N(D)ESJ(D), then
cz € J(D) € L. Hence 1 € L, contradicting that L # D.This proves that Y(D) = 0. m
In [13], the trivial extension of any ring D, DaD ={(d,c):d,c € D} with addition defined
component vise and multiplication defined by(d, ¢)(b,y) = (db, dy + cb).
2.12 Proposition: Let D be a ring. If DaD is aright AWNI. Then D is right AGP-injective.
Proof: Let W = DaD.For d € D, (0,d) € N(W). So there exists a left ideal X4 of W and n=>1
such that (0,d)" #0 and l,1y(0,d)" = W(0,d)"®Xqn. Since (0, d)?>=0. It must be that n=1.
Hence [y (0,d) = W(0,d)®Xq). By the proof of [14, Prop.(3.1)], if (b,c) € lymy(0,d) and
(m,n) e W(0,d) then b=0,m=0. So Xoa = 0aXy, where Xyis a left ideal of D. Again by [14,
Prop.(3.1)] we have Ilp1,(d) = Dd@®X,. Hence D is right AGP-injective. m
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