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A concept of AWN-injective ring is defined by [1], that is, for any  

𝑎 ∈ 𝑁 𝐷 , there exists 𝑛 ≥ 1 and an Y-sub module 𝑋𝑎 of 𝜇 (𝜇 is aright 𝐷-

module) such that 𝑎𝑛 ≠ 0 and 𝑙𝜇𝑟𝑅 𝑎
𝑛 = 𝜇𝑎𝑛 ⊕ 𝑋𝑎𝑛  as left S-module with 

S=End(𝜇). If 𝐷𝐷 is AWN-injective module, then we call 𝐷 aright AWN-

injective ring. In this note also continue to study some extensions of AWN-

injective rings. A mong others it is proved that, if 𝐷 is aright AWN-injective 

ring, so is 𝑒𝐷𝑒 for 𝑒2 = 𝑒 ∈ 𝑅 satisfying 𝐷𝑒𝐷 = 𝑒. Also prove that 𝐷 is 

reduced, and GW𝜋-reguler ring, if 𝐷 is a weak symmetric and whose every 

simple right 𝐷 -module is AWN-injective ring. 
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Introduction 

Throughout this paper all rings are associative with unit, and   -module are unitial. For  ∈  , 
    and      denote the right and left annihilator of a, respectively. We write    ),     ,      for 

the right singular ideal the set of nilpotent elements and Jacobson radical of  . Generalization of N-

injectivity (WN-injective) have been discussed in many papers [2,3,4]. Aright  -module   is called 

N-injective ring (WN-injective), if  ∈     ,      =          =     . In [5] Zhao and    

introduced an AN-injective module. Let   be a right  -module with S=End (  ). The module   is 

called AN-injective, if for any  ∈     , there exists an  -submodule    of   such that        =

  ⊕   as left S-module. They also studied right AN-injective rings and gave some characterizations 

and properties which generalized results of [3]. The module   called AGP-injective if, for any  ∈    

there exists  ≥ 1 and an  -submodule    of   such that   ≠ 0 and        
  =    ⊕    as left 

 -module [6]. Right  -module   is called JCPI [7,8] if, for any        and any right  -

homomorphism of    into   extends to one of   into  .   is called right JCPI, if   is an JCPI 

module. A ring   is regular if for every  ∈    there is  ∈   so that  =     [9]. In [10], the 

regular element in non-commutative rings have been discussed for example, 2  2  and  2    .  

Also, [11] studied some properties of regular and simple generalized m-flat rings.   is N-regular if 

for all  ∈      is regular [2]. 

 

2.Almost WN-injective rings 

In [1], introduced the notion of almost WN-injective rings as a generalization of that of almost 

N-injective rings, namely a module   is called almost WN-injective (AWNI) if for any  ∈     , 

there exists  ≥ 1 and an  -submodule    of   such that   ≠ 0 and       
  =    ⊕     as left 

S-module  with S=End( ). If   is a right AWNI, the we call   is a right AWNI-ring.  

Many of the results on right AGP-injective rings were obtained for the class of AWNI- rings. 

 

Example: Let  =   is AWNI- ring but not AGP-injective.  

Remark: Obviously, right WN-injective rings are right AWNI, but the convers is false in general. 

For example, let  = [
0  
0  

] with   is afield,     = [
0  
0 0

]. Let 0 ≠  ∈    Then   [
0  
0 0

] =

[
0  
0  

] and  [
0  
0 0

] = [
0  
0 0

]. Therefore   [
0  
0 0

] ≠  [
0  
0 0

],   is not right WN-injective. Note 

that   [
0  
0 0

] =   [
0  
0 0

] ⊕ [
0  
0  

]  Therefore, R is right AWNI. 

We now start with a lemma to be used extensively in the paper. 

Lemma (2.1):[3] Suppose that   is a right  -module with S=End (    if       =        , 

where     is a left  -submodule of  . Set         is a right  -homomorphism, then      =
     ,  ∈  ,  ∈    . 

Theorem (2.2): If   is aright AWNI- ring, then     is AWNI-ring,  ∈       such that    =
 . 

Proof: Let  =     and  ∈     =    . Then  =   ∈     , so there exists  ≥ 1 and a left 

ideal     of  , such that       
  =    ⊕     .Since 1   ∈       we see that   1    = 0 for 

any  ∈    , which imiplies that    =     . Thus            = 0. Clearly,        
       

   and             
  . Since     =     and    =     . Now, take  ∈       

   and 

write 1 = ∑   
 

 
        for some   ,   ∈   and  ≥ 1. Then for any  ∈      , we get       

  =
     

  = 0. This implies that      
  = 0 for each I, which gives   =    ∑   

    
 
   = 0, 

since  ∈  . So  ∈       
   and hence       

         
  . Take  =    , where  ∈     and 

 ∈    . Hence  =    =         ∈             and       
  =            =

         where      is aleft ideal of S Therefore, S is right AWNI.  

A ring   is called weak symmetric if     being nilpotent implies that     is nilpotent for all 

 ,  ,  ∈   [12].") 

Lemma (2.3):[12] If   be a weak symmetric ring, then all nilpotent elements of   are in       

Proposition (2.4): Let   be weak symmetric and right AWNI- ring. Then            

Proof: Let 0 ≠  ∈       If       , then there exists anon zero ideal of   such that       =
0. Hence there exists  ∈   such that   ≠ 0. Note that  ∈     (Lem.2.3) and   ∈       Since   
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is AWNI-ring, then there exists 0 ≠  ∈     and  ≥ 1  such that   ≠ 0 and       =       

for some a left ideal     of  . Write   =     for some  ∈  . If  ∈       , then     = 0  and 

this implies that   ∈      =      since       = 0. Hence      =      = 0 and so  ∈       

so      =       , Note that   ∈       =        =        . Write   =       , where 

 ∈  . Hence  =        ,  =  1       ,   1       =   , and so   ∈    . Since 1     

is invertible, contradicting with     ∈        . There fore  ∈      and hence      
       

Lemma (2.5):[2] Let   be a right JCPI. Then            
From Lem.(2.5) and prop.(2.4), we have the following corollary. 

Corollary(2.6): Let   be weak symmetric, right JCPI and right AWNI- ring, then     =       

Theorem (2.7): If   is a weak symmetric ring whose every simple right  -module is AWNI, then 

  is reduced. 

Proof: Assume that 0 ≠  ∈   with  2 = 0. Thus       , where L be amaximal right ideal of  . 

Since     is AWNI, then        
  =    ⊕    ,        . Let          be defined by 

     =    ,  ∈  . Note that f is well defined. So 1   =     =     ,  ∈  ,  ∈    , by 

Lem.(2.1) 1      =  ∈      = 0, so 1    ∈  , since   ∈     , 1     is invertible, 

which is a contradiction. Therefore,   is a reduced ring.   

According to [13], a ring   is called GW - regular, if for all  ∈      there exists  ≥ 1 such that 

  ∈       . 

Proposition (2.8): If   is a weak symmetric ring whose every simple right  -module is AWNI, 

then   is GW - regular ring. 

Proof: Let  ∈     , then by Lem.(2.3),  ∈     . We will show that           =  ,  ≥ 1. 

If           ≠  , then there exists amaximal right ideal   of   containing           . 

Then by a similar way as in the previous process, there exists  ∈   such that 1     ∈  . Since 

   ∈     , 1      is invertible, which is a contradiction. There fore           =   for any 

 ∈      and implies that   is GW - regular ring.   

From Theorem (2.7) we get corollary 

Corollary (2.9): If   is a weak symmetric ring whose every simple right    -module is AWNI, 

then: 

1.          = 0 

2. If      is nil, then     = 0 

Proposition (2.10): Let   be a weak symmetric ring, Consequently, the subsequent conditions 

are similar.   is reduced. 

1.   is reduced. 

2.   is N-regular. 

3.   is a right N-injective. 

4.   is a right WN-injective. 

5.   is a right AWNI. 

6. Every simple right  -module is AWNI. 

Proof:1 2  3      is clear and by Theorem (2.7) 6 1   

Theorem (2.11): Let   be a weak symmetric and every simple singular right  -module is AWNI, 

then     = 0. 

Proof: Suppose that     ≠ 0, then      contains a non zero element   such that  2 = 0. 

Therefore     ≠  . Let   be a maximal right ideal of   containing     , then L is an essential right 

ideal of   which implies that   /   is a right AWNI and         =      ⊕   ,       . Let 

         be defined by      =    , it is note that   is well defined. Hence, 1   =     =
      ,  ∈  ,  ∈   , 1      =       = 0  So 1    ∈  . By Lem.(2.3),      
    , then   ∈       . Hence 1 ∈  , contradicting that  ≠  .This proves that     = 0.   

In [13], the trivial extension of any ring  ,    = {  ,     ,  ∈  } with addition defined 

component vise and multiplication defined by  ,     ,   =    ,         

Proposition (2.12): Let   be a ring. If     is aright AWNI. Then   is right AGP-injective. 

Proof: Let  =    .For  ∈  ,  0,   ∈     . So there exists a left ideal    ,   of   and  ≥ 1 

such that  0,    ≠ 0 and      0,    =   0,        ,   . Since  0,   2 = 0. It must be that n=1. 

Hence      0,   =   0,       ,  . By the proof of [14, Prop.(3.1)], if   ,   ∈      0,    and 

  ,   ∈   0,    then  = 0, = 0. So    ,  = 0    , where   is a left ideal of  . Again by [14, 

Prop.(3.1)] we have         =        Hence   is right AGP-injective.   



Hazim T. Hazim /NTU Journal of Pure Sciences (2024) 3 (4) : 21-24 

24 

 

 

References 

 

 [1] Mahmood, R.D. and Mohammed, A.S. (2013) " On almost WN-injective rings", Jor.J.of Math. and 

Stat.No.Vol.1,61-79. 

[2] Wei, J. C., & Chen, J. H. (2007). nil− injective rings. International Electronic Journal of Algebra, 2(2), 1-21. 

[3] Mahmood, R. D., & Mohammad, H. Q. (2010). Wnil-Injective Modules. AL-Rafidain Journal of Computer Sciences 

and Mathematics, 7(1), 135-143. 

[4] Ahmed, F. A., & Abdul-Jabbar, A. M. (2023, January). On characterizations and properties of nil-injective rings and 

modules. In AIP Conference Proceedings (Vol. 2554, No. 1). AIP Publishing.‏ 

[5] Yu-e, Z., & Xianneng, D. (2011). On almost nil-injective rings. International Electronic Journal of Algebra, 9(9), 

 ‏.103-113

 

[6] Zhao,y.,Zhu,z. and Chen,J. (2005) "GP-injective rings" need not be P-injective, Comm-Algeb,33,(7),2395 -2402 

[7] Junchao, W. (2009). JCP-injective rings. International Electronic Journal of Algebra, 6(6), 1-22. 

[8] Mahmood, R.D.  and Mohammed, R.S. (2021)" QR and JCPI- rings", Journal of Phsics: Confernce Series 

1879(022117). 

[9] Zhou, Y. (2002). Rings in which certain right ideals are direct summands of annihilators. Journal of the Australian 

Mathematical Society, 73(3), 335-346.‏ 

[10] Afzal, F., Rukh, S., Afzal, D., Farahani, M. R., Cancan, M., & Ediz, S. (2021). A study of non-commutative Von-

Neumann regular rings. Journal of Information and Optimization Sciences, 42(7), 1425-1436.‏ 

[11] Ahmad, S.H., Mahmood, R.D., Mohammed, F.H., and Ibraheem, Z.M.(2023), On simple generalized m-flat rings, 

Journal of Discrete Mathematical sciences and cryptography , 26(4), 585-590.  

[12] Harmanci, A., Kose, H., & Ungor, B. (2018). On Weak Symmetric Property of Rings. Southeast Asian Bulletin of 

Mathematics, 42(1). 

[13] Mahmood, R.D. and Khider, K.J. (2020) " On PW -regular rings" J. Physics Coference series 159. 

[14] Xiang, Y. (2011). Almost principally small injective rings. Journal of the Korean Mathematical Society, 48(6), 

 ‏.1189-1201

 

 


